Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Apurva Joshi¹ Ankit Wala Mohit Ludhiyani Saksham Singh Mohit Gagrani Subhadip Hazra Debraj Chakraborty² D. Manjunath² Hoam Chung³

> ¹IITB-Monash Research Academy, Mumbai, India ²Indian Institute of Technology Bombay, Mumbai, India ³Monash University, Melbourne, Australia

Conference on Decision and Control, 2017

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law

Conclusions

・ロト・4回ト・4回ト・4回ト・回・のへの

 Several applications that require cooperation among flying robots Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law

Quadrotors as double integrators Consensus Law Consensus experiments

Conclusions

¹ Joshi et. al. Implementation of distributed consensus on an outdoor testbed, ECC = 16 = $-9 \circ \circ$

- Several applications that require cooperation among flying robots
- Substantial theoretical literature available on consensus of multi-agent systems with double integrator dynamics

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law

Conclusions

Joshi et. al. Implementation of distributed consensus on an outdoor testbed, ECC=16 💿 🔗 Q 🖓

- Several applications that require cooperation among flying robots
- Substantial theoretical literature available on consensus of multi-agent systems with double integrator dynamics
- Practical implementation: outdoors, decentralized

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Conclusions

Joshi et. al. Implementation of distributed consensus on an outdoor testbed, ECC=16 💿 🔗 Q 🖓

- Several applications that require cooperation among flying robots
- Substantial theoretical literature available on consensus of multi-agent systems with double integrator dynamics
- Practical implementation: outdoors, decentralized

Quadrotors¹ can be approximated as double integrators, driven to consensus only using exchange of position data Communication: Synchronized, no data collisions, guaranteed real-time Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Onsensus law Quadrotors as double integrators Consensus Law Consensus experiments

Joshi et. al. Implementation of distributed consensus on an outdoor testbed, ECC 16 🚊 🗠 🔿 🔍 (~

Testbed

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Hardware Architecture

Figure: Virtual unit

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law

integrators Consensus Law Consensus experiments

Conclusions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Communication Protocol

- Synchronized data transfer
- Real-time, no data collisions
- Fully airborne. No need of ground station
- Robust: can handle link breakage with synchronizing node

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol

Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law

integrators Consensus Law Consensus experiments

Conclusions

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

CONSENSUS law Quadrotors as double integrators Consensus Law Consensus experiments

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

CONSENSUS Taw Quadrotors as double integrators Consensus Law Consensus experiments

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Slot allotment

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Data transfer

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Data transfer

Time synchronization (Nodes 0,1)	Slot Start Packet (node-0)	Slot 1 (Node 1)	Slot-2 (Node 2)	•>	Slot n (Node n)	Request to send (Node 1)	Sync packet sent (Node 0)	Time stamp sent (Node 1)
Repeat								

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Data transfer

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

LONSENSUS IAW Quadrotors as double integrators Consensus Law Consensus experiments

Conclusions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer **Re-synchronization** Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Addressing contingencies

Link break with Node-0,1

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Conclusions

Link break with all nodes

Communication Protocol

Indoor environment

- Area: 10 m × 10 m
- Duration: 300 s
- Average efficiency: 98.11%

Table: Efficiency (%) of data reception of six nodes: indoor

Node	1	2	3	4	5	6
1	-	95.64	99.75	99.88	99.50	96.02
2	97.66	-	91.82	100.00	99.50	96.02
3	99.41	96.85	-	98.82	99.38	95.90
4	99.53	98.67	99.87	-	100.00	96.52
5	98.36	98.67	98.49	99.88	-	92.55
6	99.41	96.25	99.62	99.88	99.38	-

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies **Performance**

Consensus law Quadrotors as double integrators

Consensus Law

Communication Protocol

Outdoor environment

- Area: 55 m × 46 m
- Duration: 300 s
- Average efficiency: 90.25%

Table: Efficiency (%) of data reception of six nodes: outdoor

Node	1	2	3	4	5	6
1	-	92.49	91.20	94.24	89.22	90.77
2	91.18	-	93.88	89.22	88.34	91.39
3	84.24	91.49	-	92.84	87.09	92.02
4	86.09	89.87	91.07	-	89.61	92.76
5	89.30	91.99	92.69	90.86	-	91.76
6	86.66	91.36	87.39	91.47	85.21	-

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

Quadrotors as double integrators

If we can vary θ_p and θ_r independently and instantaneously, then motion in the $x_E y_E$ – plane can be modelled as a double integrator. Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law

Consensus experiments

Consider a team of n quadrotors. For each quadrotor i at time t:

► Position: $\mathbf{p}_i^{\mathsf{E}}(t) = \begin{bmatrix} p_x^{\mathsf{E}}(t) & p_y^{\mathsf{E}}(t) \end{bmatrix}^T \in \mathbb{R}^2$

• Velocity:
$$\mathbf{v}_i^E(t) = \begin{bmatrix} v_x^E(t) & v_y^E(t) \end{bmatrix}^T \in \mathbb{R}^2$$

► Consensus: $\|\mathbf{p}_i^E(t) - \mathbf{p}_j^E(t)\| \to 0$ and $\mathbf{v}_i^E \to 0$ as $t \to \infty$, for all $\mathbf{p}_i^E(0)$ and $\mathbf{v}_i^E(0)$ and all i, j = 1, ..., n.

・ ロ ト ・ (目 ト ・ 目 ト ・ 日 ト ・ 日 - -

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law

Consensus law

- Information exchange modelled as undirected graph G_n := (V, E) where V = {1, ..., n} is the set of nodes and E ⊆ (V × V) is the set of edges
- ► Node ≡ quadrotor, edge ≡ available communication channel
- Set of neighbours, $\mathcal{N}_i := \{j \in \mathcal{V} : (i,j) \in \mathcal{E}\}.$
- Adjacency matrix, $\mathcal{A}_n(\mathcal{G}_n) := [a_{ij}] \in \mathbb{R}^{n \times n}$
 - a_{ij} = 1, if communication link exists between agents i and j

• $a_{ij} = 0$, otherwise

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law

Consensus experiments

Consensus law

Theorem Given a system

$$\dot{\mathbf{p}}^E = \mathbf{v}^E, \qquad \dot{\mathbf{v}}^E = \mathbf{f}^E$$

The control law ²,

$$\mathbf{f}_i^E = \sum_{j \in \mathcal{N}_i} a_{ij} (\mathbf{p}_j^E - \mathbf{p}_i^E) - \beta \mathbf{v}_i^E, \qquad i = 1, ..., n$$

achieves consensus asymptotically iff \mathcal{G}_n is connected

²Proof similar to W. Ren, R. Beard, Distributed consensus in multi-vehicle cooperative control, Springer, 2008 $(\Box \rightarrow \langle \Box \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi Z \land \langle \Xi Z \land \Box \land \langle \Xi Z \land \langle \Xi Z \land \langle \Xi Z \land \Box Z$

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

(1)

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law

Quadrotors as double ntegrators

Consensus Law

Consensus experiments

A GPS plot of physical and virtual agents reaching consensus

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double integrators Consensus Law Consensus experiments

- . . . **.**

・ロト・西ト・ヨト・ヨー うへの

Consensus experiments

Effect of different data exchange rates on consensus performance

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Consensus experiments

Conclusions

- Consensus achieved between agents using only exchange of position information.
- Real-time information exchange achieved using synchronized communication protocol with no data collisions.
- All computations are decentralized. No need of ground station.
- Effect of communication rate on consensus performance studied.

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Quadrotors as double integrators Consensus Law Consensus experiments

Conclusions

うせん 川田 ふぼう ふぼう ううし

Thank you :)

Questions?

Implementation of distributed consensus with guaranteed real-time communication on an outdoor testbed

Joshi, et. al.

Motivation

Hardware Architecture

Communication Protocol Time synchronization Slot allotment Data transfer Re-synchronization Addressing contingencies Performance

Consensus law Quadrotors as double

integrators Consensus Law Consensus experiments

Conclusions

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● ● ●