Implementation of distributed consensus on an outdoor testbed

Apurva Joshi¹ Narendra Limbu³ Indrajit Ahuja⁴ Ameer K. Mulla¹ Hoam Chung² Debraj Chakraborty¹

¹Indian Institute of Technology Bombay, Mumbai, India
 ²Monash University, Melbourne, Australia
 ³IFM Engineering Pvt. Ltd., Pune, India
 ⁴Larsen & Toubro India Ltd., India

European Control Conference, 2016

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation

Control laws Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusior

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overview

Consensus: all agents reach an autonomously decided common state

Distributed: all agents take control decisions themselves

Contribution: Distributed multiagent consensus algorithm

Convergence: theoretically provable

Practical implementation: outdoor, on three quadrotors

イロト 不得 トイヨト イヨト 三日

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque

Control laws Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Motivation

- Quadrotors: good benchmark for testing advanced control algorithms
 - Ease of assembly, availability of components
 - Nonlinear underactuated dynamics
 - Six degrees of freedom
- State of the art:
 - Sophisticated theory for multiagent consensus (single and double integrator agents) already developed
 - Practical implementation: Indoors with motion capture cameras or with centralized control algorithms
 - COLLMOT group, Eötvös University, Hungary: distributed, empirical consensus law without proof of convergence

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dvnamics

Frames of reference Thrust and torque generation

Control laws Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Table of contents

Quadrotor dynamics

Frames of reference Thrust and torque generation

Control laws

Inner loops Waypoint navigation Consensus law

Implementation

Simulation Hardware Experiment design

Results

Consensus video Position plots Angle correction plots

Conclusion

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws

Inner loops Waypoint navigation Consensus law

Implementation

Simulation Hardware Experiment design

R**esults** Consensus video

Angle correction plots

Conclusior

Frames of reference:

Earth frame, $\{E\}$

- x_E axis points in the north direction
- ▶ y_E − axis points in the east direction
- *z_E* axis points in the up direction

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics

Thrust and torque

Control laws Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots

Frames of reference:

Body frame, $\{B\}$

- x_B axis points towards front end
- y_B axis points towards right end
- z_B axis points downwards

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics

Frames of reference

Thrust and torque generation

Control laws Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots

Frames of reference:

An auxiliary frame, $\{V\}$,

- same origin as {B}
- *z_V* axis is parallel to *z_E* – axis
- x_V, y_V axes are projections of x_B, y_B onto a plane parallel to the x_Ey_E – plane in {E} and passing through the origin of {V}.

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation

Control laws Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

- Motion along six degrees of freedom achieved by varying rotor speeds, \$\vec{\omega}_i\$
- Generating pairwise difference in rotor thrusts leads to rotational motion

$$\begin{bmatrix} T \\ \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} -b & -b & -b & -b \\ 0 & -db & 0 & db \\ db & 0 & -db & 0 \\ k & -k & k & -k \end{bmatrix} \begin{bmatrix} \bar{\omega}_1^2 \\ \bar{\omega}_2^2 \\ \bar{\omega}_3^2 \\ \bar{\omega}_4^2 \end{bmatrix} = A \begin{bmatrix} \bar{\omega}_1^2 \\ \bar{\omega}_2^2 \\ \bar{\omega}_3^2 \\ \bar{\omega}_4^2 \end{bmatrix}$$
(1)

where,

- *T* is thrust generated, $\begin{bmatrix} \tau_x & \tau_y & \tau_z \end{bmatrix}^T$ are the torques generated
- ▶ b,k: constants
- d: distance of the motor from the CoG of the quadrotor

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference

Thrust and torque generation

Control laws Inner loops Waypoint navigation Consensus law

mplementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Control loops

Figure: A block diagram of the quadrotor control loops

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws Inner Loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusior

・ロト ・日 ・ モ ・ ・ モ ・ ・ の への

- ▶ Process by which the quadrotor navigates to different positions $\mathbf{p}^E = \begin{bmatrix} p_x^E & p_y^E \end{bmatrix}^T \in \mathbb{R}^2$ in $\{E\}$
- Generate τ_x and τ_y to vary θ_p and θ_r and thus maneuver the quadrotor
- Keep θ_y constant using heading control loop.

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws

Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusion

► Consider the frame {V}. To accelerate along x_V − and y_V − axes, we need to generate forces

$$\begin{aligned} f_x^V &= T \sin \theta_p \approx T \theta_p & (2) \\ f_y^V &= T \sin \theta_r \cos \theta_p \approx T \theta_r. & (3) \end{aligned}$$

for small θ_x and θ_y

We control the motion using a PD law

$$\mathbf{f}^{V*} = mK_f[K_p(\mathbf{p}^{V*} - \mathbf{p}^V) - \mathbf{v}^V]$$
(4)

where
$$\mathbf{f}^{V} = \begin{bmatrix} f_{x}^{V} & f_{y}^{V} \end{bmatrix}^{T}$$

► Then, desired values of angles, $\Theta^* = \begin{bmatrix} \theta_p^* & \theta_r^* \end{bmatrix} \in \mathbb{R}^2$ are

$$\Theta^* = \frac{mK_f}{T} [K_\rho (\mathbf{p}^{E*} - \mathbf{p}^E) - \mathbf{v}^E]$$
 (5)

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws Inner loops Waypoint navigation Consensus Jaw

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusion

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─臣 ─の�@

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws Inner loops Waypoint navigation Consensus Jaw

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusior

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

• In the $\{E\}$ frame,

$$\mathbf{f}^E = \mathbf{R}^E_V \mathbf{f}^V$$

and

$$\begin{aligned} f_x^V &= T \sin \theta_p \approx T \theta_p \\ f_y^V &= T \sin \theta_r \cos \theta_p \approx T \theta_r. \end{aligned} \tag{8}$$

for small θ_x and θ_y

 If we can vary θ_p and θ_r independently and instantaneously, then motion in the x_Ey_E - plane can be modelled as a double integrator. Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws Inner loops Waypoint navigation

(7)

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

- We vary θ_p and θ_r independently and quickly such that change in angle is much faster than translational motion
- As θ_p and θ_r change, the vertical component of T reduces by a factor of the cosine of θ_p and θ_r
- But θ_p and θ_r are small and altitude control loop is fast

Hence the quadrotor can be modelled as a double integrator

$$\dot{\mathbf{p}}^E = \mathbf{v}^E, \qquad \dot{\mathbf{v}}^E = \mathbf{f}^E \tag{10}$$

where

•
$$\mathbf{p}^{E} = \begin{bmatrix} p_{x}^{E} & p_{y}^{E} \end{bmatrix}^{T} \in \mathbb{R}^{2}$$
 is the position in $\{E\}$
• $\mathbf{v}^{E} = \begin{bmatrix} v_{x}^{E} & v_{y}^{E} \end{bmatrix}^{T} \in \mathbb{R}^{2}$ is the velocity in $\{E\}$
• $\mathbf{f}^{E} = \begin{bmatrix} f_{x}^{E} & f_{y}^{E} \end{bmatrix}^{T} \in \mathbb{R}^{2}$ is the acceleration input in $\{E\}$

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws

Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Consensus law

- If, for all p^E_i(0) and v^E_i(0) and all i, j = 1, ..., n, ||p^E_i(t) − p^E_j(t)|| → 0 and v^E_i → 0 as t → ∞ then consensus achieved
- Information exchange modelled as undirected graph G_n := (V, E) where V = {1, ..., n} is the set of nodes and E ⊆ (V × V) is the set of edges
- Node ≡ quadrotor, edge ≡ available communication channel
- Set of neighbours, $\mathcal{N}_i := \{j \in \mathcal{V} : (i, j) \in \mathcal{E}\}.$
- ▶ Laplacian matrix \mathcal{L}_n of a graph \mathcal{G}_n is given by $\mathcal{L}_n = [l_{ij}] \in \mathbb{R}^{n \times n}$; $l_{ij} = -a_{ij}$, $i \neq j$, $l_{ii} = \sum_{j=1, j \neq i}^n a_{ij}$.

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation

Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusior

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consensus law

We propose the following consensus law for the n quadrotors, where each quadrotor is modelled as a double integrator

$$\mathbf{f}_i^E = \sum_{j \in \mathcal{N}_i} a_{ij} (\mathbf{p}_j^E - \mathbf{p}_i^E) - \beta \mathbf{v}_i^E, \qquad i = 1, ..., n$$
(11)

where

- ► a_{ij} is the (i, j) entry of the adjacency matrix A_n ∈ ℝ^{n×n} corresponding to the communication graph, G_n
- β is a positive constant

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws Inner Ioops

Waypoint navigation Consensus law

mplementation Simulation Hardware Experiment design

Results Consensus vide

Position plots Angle correction plots

Conclusior

Consensus law

Theorem Given a system

$$\dot{\mathbf{p}}^E = \mathbf{v}^E, \qquad \dot{\mathbf{v}}^E = \mathbf{f}^E$$

The control law ¹,

$$\mathbf{f}_i^E = \sum_{j \in \mathcal{N}_i} a_{ij} (\mathbf{p}_j^E - \mathbf{p}_i^E) - \beta \mathbf{v}_i^E, \qquad i = 1, ..., n$$

achieves consensus asymptotically iff \mathcal{G}_n is connected As a result

▶
$$\mathbf{p}(t) \rightarrow (\beta \mathbf{1}_n \mathbf{1}_n^T \otimes I_2) \mathbf{p}(0) + (\mathbf{1}_n \mathbf{1}_n^T \otimes I_2) \mathbf{v}(0)$$

▶ $\mathbf{v}(t) \rightarrow 0 \text{ as } t \rightarrow \infty$
Hence $\|\mathbf{p}_i^E(t) - \mathbf{p}_j^E(t)\| \rightarrow 0 \text{ and } \mathbf{v}_i^E \rightarrow 0 \text{ as } t \rightarrow \infty$ for $i, i = 1, ..., n$

¹Proof similar to W. Ren, R. Beard, Distributed consensus in multi-vehicle cooperative control, Springer, 2008 Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws Inner loops Waypoint navigation Consensus law Implementation

(12)

all

Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Simulation

- Quadrotor dynamics modeled as double-integrator dynamics decoupled along two principle axes
- Proposed consensus law first tested on a multi-agent system simulation platform with double integrator agents to predict the behaviour of the actual quadrotor system

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation

Control laws Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusion

Hardware

Component	Details
Frame	Hobbyking X550
Motors	Turnigy Park 480 Outrunner 1320 kv BLDC
Motor driver	AE-30A Brushless ESC
Processor	APM 2.6 with ATmega 2560 microcontroller
Barometer	MS5611
IMU	MPU 6000 Gyroscope + Accelerometer
GPS	3DR uBlox GPS with Compass
Communication	XBee Pro S1, XBee S8
Power	LiPo 5000 mAh, 3S 50C, 11.1V battery

Table: List of hardware components used

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws

Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Consensus video Position plots Angle correction plots

Conclusior

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Experiment design

- ► Each quadrotor broadcasts its position information, $\mathbf{p}^{E} = \begin{bmatrix} p_{x}^{E} & p_{y}^{E} \end{bmatrix}^{T}$ which is measured by the on-board GPS receiver
- Position accuracy of the GPS receiver is 2.5m CEP
- ▶ Thus, for practical reasons, we say that the quadrotors reach consensus if $\|\mathbf{p}_i^E(t) \mathbf{p}_j^E(t)\| \le 2.5m$ for all i, j = 1, 2, 3.

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation

Control laws Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Results

Consensus Video

Implementation of distributed consensus on an outdoor testbed

Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics

Frames of reference Thrust and torque generation

Control laws Inner loops Waypoint navigation

mplementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusior

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Position plots

Latitude and Longitude tracking

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws Waypoint navigation Consensus law

> Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusior

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Angle correction plots

Roll and pitch angle correction

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws Inner loops Waypoint navigation

mplementatior Simulation

Hardware Experiment design

Results

Position plots Angle correction plots

Conclusior

Conclusion

Proposed and implemented a decentralized consensus law wherein

- On-board controllers take navigation decisions by communication with its neighbours

 decentralized!
- Justification for approximating the quadrotor as two independent double integrators acting along the x and y- axes of motion
- Outdoor environment However, the quadrotors still successfully managed to reach consensus.

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of reference Thrust and torque generation Control laws

Inner loops Waypoint navigation Consensus law

Implementation Simulation Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusion

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Implementation of distributed consensus on an outdoor testbed

> Joshi, Limbu, Ahuja, Mulla, Chung, Chakraborty

Quadrotor dynamics Frames of referen

Thrust and torque generation

Control laws Inner loops Waypoint navigation Consensus law

mplementation

Hardware Experiment design

Results Consensus video Position plots Angle correction plots

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Thank you :)

Questions?